An Extragradient Algorithm for Quasi-Variat-Ional Inequality Problem
نویسندگان
چکیده
منابع مشابه
the algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولAn alternative extragradient projection method for quasi-equilibrium problems
For the quasi-equilibrium problem where the players' costs and their strategies both depend on the rival's decisions, an alternative extragradient projection method for solving it is designed. Different from the classical extragradient projection method whose generated sequence has the contraction property with respect to the solution set, the newly designed method possesses an expansion proper...
متن کاملA Quasi-variational Inequality Problem in Superconductivity
We derive a class of analytical solutions and a dual formulation of a scalar two-space-dimensional quasi-variational inequality problem in applied superconductivity. We approximate this formulation by a fully practical ̄nite element method based on the lowest order Raviart Thomas element, which yields approximations to both the primal and dual variables (the magnetic and electric ̄elds). We prove...
متن کاملStrong convergence of an extragradient-type algorithm for the multiple-sets split equality problem
This paper introduces a new extragradient-type method to solve the multiple-sets split equality problem (MSSEP). Under some suitable conditions, the strong convergence of an algorithm can be verified in the infinite-dimensional Hilbert spaces. Moreover, several numerical results are given to show the effectiveness of our algorithm.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Applied Mathematics
سال: 2015
ISSN: 2324-7991,2324-8009
DOI: 10.12677/aam.2015.41009